Home / Posts Tagged "Petrosino"

Two girls discussing the books they are reading.

Photo by Christina S. Murrey

Because of the foundational importance of literacy to education, teachers are increasingly expected to integrate reading across various subjects, including science. But choosing appropriate texts can be a challenge for teachers, who may not be well-versed in how to critically evaluate them.

Headshot of Dr. Petrosino

Anthony Petrosino

Associate Professor Anthony Petrosino of the College of Education at The University of Texas at Austin’s STEM Education program and doctoral student Sarah Jenevien have developed a solution that addresses this challenge.

The two collaborated with the college’s Office of Instructional Innovation to develop an online Children’s Science Book Database, where pre-service elementary teachers post reviews of science-related children’s books. The database was created in 2014 and has become part of pre-service teachers’ coursework within their science methods class.

“The review template encourages pre-service teachers to engage critically with the texts in terms of their scientific content, fostering scientific process skills and identifying potential stereotyping or gender bias,” says Petrosino.

Pre-service teachers are asked research-based questions. They must critically assess the literature for processes, content, readability, engagement, and interest. Their reviews provide basic information, such as a summary of the book and the maximum and minimum grade levels it would be appropriate for.

For example, one student wrote of the book Volcanoes, “The book could be considered slightly gender-biased because only images of male geologists are included. However, considering the publishing date, it’s most likely that only men were given credit for the science discoveries at the time.”

Currently, over 130 children’s books have been reviewed for the database, including titles such as Pluto’s Secret, A Butterfly is Patient, What Makes Day and Night? and Cloudy with a Chance of Meatballs, which one reviewer noted has many positive aspects, but is not based on sound scientific principles, “as it is impossible for food to fly down from the sky three times a day.”

“By searching the database, pre-service teachers can easily find books that match their grade level and subject area, which decreases the difficulties associated with integrated lesson planning and increases the likelihood that they will use children’s books during their field teaching experiences,” says Petrosino. “This work helps teachers become critical consumers of children’s literature.”

The database is available for educators and the public to view reviews.

 

 

Over the past couple of decades, UT Austin’s College of Education has become a national leader in preparing STEM (science, technology, engineering, math) teachers who can motivate and ignite learning in a wide array of students, including groups that traditionally have avoided or done poorly in STEM courses.

One of the most successful efforts has been STEM education expert Anthony Petrosino’s Beyond Blackboards project, which he developed in partnership with Rich Crawford in UT’s Cockrell School of Engineering and Chandra Muller in the College of Liberal Arts.

Students participate in robotics competitions.

Students participate in robotics competitions.

To boost middle school students’ understanding of all sorts of complex math and science concepts, the National Science Foundation-funded project focuses on something that appeals to a lot of kids: putting together robotic contraptions that look like really cool toys and then seeing if those contraptions work.

A considerable body of research shows that when students are given a chance to be active participants in their learning, do hands-on projects, solve problems on their own or in a group, and work on activities that are clearly tied to real life and seem relevant, they learn more.

Another perk to this teaching approach, which is called project-based or inquiry-based instruction, is that it has been particularly effective with student populations that traditionally have struggled academically, especially in math and science courses.

“Right now, the national dropout rate for Hispanics stands at around 40 percent,” said Petrosino, an associate professor in the Department of Curriculum and Instruction and co-founder of the nationally acclaimed UTeach program. “Many of these students may not perform well on tests, but they have skill sets that allow them to do well in engineering design. The confidence and expertise they gain while they engage in something like engineering design can be a really effective starting point for understanding core math and science subject material.”

According to Petrosino, inquiry-based projects tend to tap into students’ natural motivation and facilitate mastery of advanced scientific concepts like rules of evidence, investigation, and prediction.

“We’re using engineering-based design and robotics competitions and projects to create a context for math and science learning,” said Petrosino. “The high-level skills these projects are building can prepare students for jobs as engineers, certainly, but those same skills can also open the door to a career in medicine, software design, or architecture.”

Students participate in robotics competitions.

Students participate in robotics competitions.

To encourage more students to pursue STEM college majors and career fields, Beyond Blackboards takes a four-pronged approach that includes research-based materials and training for all major stakeholders: students, teachers, school administrators, and parents.

During after-school programs, such as robotics clubs, and at intensive summer camps, students spend lots of time on inquiry-based, open-ended, hands-on learning activities. At the same time, they’re introduced to a wide selection of STEM college options and careers.

Teachers participate in professional development that boosts their engineering knowledge and the level of comfort they have using technology in their classrooms. They’re also taught how to introduce students to engineering, which can include pointing out basic, everyday examples of engineering in real life. This helps students take the topic from the realm of abstract concepts into familiar contexts.

Beyond Blackboards builds support from school counselors and administrators by providing professional development and field trips to local businesses and organizations that offer many kinds of jobs in STEM fields. Teachers outside math and science – career instructors and art teachers, for example – have access to this training as well.

The program also reaches out to parents and caregivers, targeting historically under-represented groups, like African Americans and Hispanics, in order to build understanding about the career options open to students who have math and science skills.

At UT Austin, Beyond Blackboards engages engineering and UTeach students to serve as mentors for middle school students in the program, offering academic support and helping students look ahead to college and beyond.

“Support from multiple sources increases the likelihood of success,” said Petrosino. “University partners like DTEACH are very involved, as well as corporate partners like Skillpoint Alliance, a Central Texas education and workforce agency, and members of communities around the participating schools.

“Research shows that middle school is a critical decision-making time for students, and Beyond Blackboards focuses on engaging people who are in a position to positively influence those students. Really focusing on historically underserved populations, we’re tapping into a large group with a wealth of talent that may previously have gone unnoticed.”

Like robotics, science video games are an innovative, research-proven way to pique middle school students’ interest in science – one that learning technologies expert Min Liu has perfected in the guise of “Alien Rescue.”

It’s hard to deny the power of a good space adventure video game to motivate middle-schoolers,” said Liu, a professor in the Department of Curriculum and Instruction. “What 10- or 11-year old wouldn’t get into traveling through outer space and rescuing aliens?”

Created for sixth grade science students by Liu and her Learning Technologies Program graduate students, the video game “Alien Rescue” places tweens in the role of space scientist.

Children learn to use the scientific procedures that real scientists use, ask the tough questions scientists ask, and research answers to those questions.

As with any good inquiry-based lesson, Alien Rescue is story-driven and tasks students with finding suitable homes in the solar system for six alien species who have lost their home planets and are broadcasting a desperate plea for help to Earth. Each species has very different habitat requirements; if those requirements aren’t met, each student group’s alien will perish.


Watch teachers, students and developers talk about Alien Rescue benefits in the classroom.
 

The 3D online immersive learning environment combines the fantasy element of aliens with the realism of being a young investigator, which research has shown to be a great match for middle school students. Through a discovery approach, the students learn from their mistakes as they play the game, self-correct their errors, and are supported by various tools that are built into the program.

“Alien Rescue is an excellent example of inquiry-based learning,” Liu said, “and the game has been very successful as a teaching and learning tool for all groups, from gifted and talented to at-risk students. According to teachers, students are highly motivated to participate and quickly get into the role of space scientist.”

Since the game feels more like play than schoolwork, it may seed positive attitudes about science that remain through high school and college.

Alien Rescue has become so popular that it’s now part of the science curriculum in 30 states as well as Australia, China, Canada, and South Korea. In the past year alone, Liu has received requests from 23 more schools in 10 states and Canada, Cyprus, and New Zealand to implement the program. In the Austin area, it’s part of the school science curriculum in Round Rock, Leander, and Killeen.

Even though the addictive game is intended for sixth-graders (it’s aligned with the sixth grade Texas Essential Knowledge and Skills test), teachers in fifth through ninth grade classrooms have used it and proven that, with modifications, it’s an equally superb tool for a broader audience.

Students use the Alien Rescue video game in school.

Students use the Alien Rescue video game in school.

That broader audience includes the dozens of graduate students over the past 10 years who have refined and improved the game – adding new features, incorporating new technologies, fleshing out the characters, and updating the science content.

“When I agreed to develop this game, I never anticipated it would entice so many top-notch students, ones who jump at the chance to use it as a learning tool and research platform,” said Liu. “Alien Rescue meets their needs, whether they’re wanting to develop technical, design, or research talents. Our team has included grad students from backgrounds as diverse as learning technology, video production, teaching, astronomy, content development, and computer science.”

As part of the project, Liu’s graduate students have had opportunities to present papers about Alien Rescue at major learning technology and education research conferences. In addition to several other honors, the game has won the Interactive Learning Award from the National Association for Educational Communications and Technology, while those who’ve worked on the game have been honored with an Outstanding Research Paper Award from the World Conference on Educational Media and Technology.

“The thing that makes this project so special,” said Jina Kang, a doctoral student on Liu’s team, “is that every new group of graduate students brings new talents to the table and the game improves every single year. It’s never static. This is one major reason we’re getting so much positive attention.

“For example, right now we’re building a dashboard that teachers can use to follow, in real time, what students are doing in the game. And we’re working to integrate more math content into the program so math teachers can use it in their classes. We gained three new graduate students who have been middle school math teachers, so we’re able to develop multimedia-based math concepts and make Alien Rescue interdisciplinary. It’s all kind of amazing.”

Like robotics, high quality educational video games are igniting learning in students who never thought they could master complex math and science material.

“Over the past several decades science has shown us so much more about how the brain works, especially young, developing brains,” said Petrosino. “We know more about how children learn. Using this new information, we’re coming up with fresh ways of increasing students’ knowledge.”

-Video by Mengwen Cao from the Alien Rescue team